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Survival Analysis

• Methods to analyze “time to event” data.
• Useful for many different applications

– Time to death from disease diagnosis
– Length of hospital stay
– Cost of insurance claims.

Time origin                                           Event

Time origin                            Censored value



Censoring and Truncation
• Censoring and truncation describe different forms of 

incomplete observation of event times:

• Here, we assume right-censored data only.

Censoring
Right
Left
Interval

Truncation
Right
Left (delayed entry)
Interval (gap times)



Random Censoring Reminder

• All standard methods of survival analysis assume 
that censoring is random:  Those censored at 
time ti should be representative of all subjects 
still alive at ti (with the same covariate values).

• This assumption cannot be checked by any 
statistical test.  



Cox Regression Model

where h(t ; x) is the hazard function at time t for a 
subject with covariate values x1, … xk,

h0(t) is the baseline hazard function, i.e., the hazard 
function when all covariates equal zero.

exp is the exponential function (exp(x)= ex),
xi is the ith covariate in the model, and
βi is the regression coefficient for the ith covariate, xi. 

h t x h t x xo k k( ; ) ( )exp{ }= + +β β1 1 L



Cox Regression (cont’d) 

• The Cox Model is different from ordinary 
regression in that the covariates are used to 
predict the hazard function, and not Y itself. 

• The baseline hazard function can take any form, 
but it cannot be negative.

• The exponential function of the covariates is used 
to insure that the hazard is positive.

• There is no intercept in the Cox Model .  (Any 
intercept could be absorbed into the baseline 
hazard.)

h t x h t x xo k k( ; ) ( )exp{ }= + +β β1 1 L



Cox Regression (cont’d)

h(t, xi)

t

• The basic Cox Model assumes that the hazard 
functions for two different levels of a covariate are 
proportional for all values of t.

• For example, if men have twice the risk of heart 
attack compared to women at age 50, they also 
have twice the risk of heart attack at age 60, or any 
other age.

• The underlying risk of heart attack as a function of 
age can have any form.



Proportional Hazards
To see the proportional hazards property analytically,
take the ratio of h(t;x) for two different covariate values:

ho(t) cancels out => the ratio of those hazards is the same
at all time points.
For a single dichotomous covariate, say with values 0 and 1,
the hazard ratio is 
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Software for Cox Regression: PHREG

• Syntax for Cox regression using Proc PHREG
– The time variable is “days”
– The censor code is “status” (1=dead, 0=alive)
– Underlined items are user-specified

proc phreg;
model  days*status (0) = sex age;
output out=temp resmart=Mresids

resdev=Dresids ressch=Sresids;
id  subj group;
run;



Overview of Residuals for Cox Regression

• Cox-Snell residuals 
– range 0 to ∞

• Martingale residuals
– a linear transform of Cox-Snell residuals 
– range -∞ to 1

• Deviance residuals 
– a transform of Martingale residuals to make 

symmetric around zero
• Score residuals (one per subject per covariate)
• Schoenfeld residuals (one per subject per 

covariate)



Common Residual Plots
• Plot martingale residuals vs continuous 

covariates 
– to check functional form of covariates

• Plot deviance residuals vs Observation # 
– to check for outliers

• Plot Schoenfeld residuals for each covariate, 
vs Time or log(Time)
– to check proportional hazards (PH)

• Note: Censoring and categorical covariates 
can produce banded residual patterns that do 
not reflect any problem with the model.



Martingale Residuals

• Skewed
• Near 1 ⇒ “died too soon”; Large negative 

⇒ “lived too long”
• Plots of residuals vs. continuous 

covariates:  Patterns may suggest 
continuous variables not properly fit
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Example of Martingale Residuals



Deviance Residuals

• Roughly symmetrically distributed around 
zero, with approximate s.d. = 1.0

• Positive values ⇒ “died too soon”
• Negative values ⇒ “lived too long”
• Very large or small values ⇒ outliers

• This is the only plot that is useful for 
checking outliers.
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Schoenfeld Residuals
• Schoenfeld residuals are computed with one 

per observation per covariate.
– Only defined at observed event times
– For the ith subject and kth covariate, the estimated 

Schoenfeld residual, rik, is given by (notation from 
Hosmer and Lemeshow)

– Where xik is the value of the kth covariate for 
individual i, and 

– is a weighted mean of covariate values for 
those in the risk set at the given event time. 

– A positive value of rik shows an X value that is 
higher than expected at that death time.

kwikik i
xxr ˆˆ −=

kwix̂



Schoenfeld Residuals
• Schoenfeld residuals sum to zero.
• For a dichotomous (0,1) variable, Schoenfeld

residuals will be between –1 and 1.
• In this case,

• The residual plot will have two bands, one 
above zero for x=1, and one below zero for 
x=0.
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An Example of Martingale and 
Deviance Residuals with non-PH

• Outcome: Time to death
• Covariate: treatment group (labels 0 and 1)
• The next 3 slides show

– Kaplan-Meier plot for the two groups
– Martingale residuals
– Deviance residuals
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Example: KM Plot shows Crossing 
Survival Functions (non-PH)

Group=0 has more “early deaths,”
but also more longer lifetimes than 
Group=1.
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Martingale Residuals 

Group=0 (solid dots) has both the earliest deaths 
(top) and the longest surviving values (bottom).
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Observations
• In both Martingale and Deviance residuals, 

Group=0 had both the earliest deaths and the 
longest surviving values (most extreme values 
top and bottom). 

• Such a pattern would indicate non-proportional 
hazards (non-PH)

• Other situations of non-PH may not be so easy 
to see from these plots.

• In this example, the Deviance residual plot 
does not show any outliers.



Assumptions of the Cox Model
• Structure of the model is assumed correct

– Model is multiplicative (e.g., vs additive)
– All relevant covariates have been included
– We will not consider these assumptions here

• Functional form
– Do we have the correct functional form for 

continuous covariates?
– Are there any significant interactions?

• Is the Proportional Hazards assumption 
met?  If not, what are the options?



Assessing Functional Form of 
Continuous Covariates

• Often we assume continuous covariates have a 
linear form.  However, this assumption should 
always be checked.  We give 3 ways to check:

• Method 1 (try X categorical):
– Categorize X into ≥4 intervals, say by quantiles.
– Create dummy variables for the categories and 

fit a model with these dummy variables.  
– Plot β estimates by X interval midpoints, with 

β=0 for the reference category.  
– Look at the shape, and model X accordingly 

(e.g., linear, quadratic, threshold).



Plot of Beta Estimates by 
Age Category Midpoints
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Assessing Functional Form (cont’d)
• Method 2 (loess line through martingale residuals):

– Output martingale residuals from a model WITHOUT X. 
(proc phreg; model …; output out=temp resmart=resids;)

– Fit a loess line through the martingale residuals, as a 
function of X.
(ods output ScoreResults=temp2; 
proc loess data=temp;  model resids=X;  score;   run;)

– Plot martingale residuals (with loess curve) by X.
(proc gplot data=temp2;                                                    
plot resids*X  p_resids*X / overlay; run;)                                 

– Model X as appropriate (e.g., linear, quadratic, threshold), 
and re-check.



Plot of Martingale Residuals by Age, with 
Loess Line (Age not in model)
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Plot of Martingale Residuals by Age, with 
Loess Line (Age in model as linear)
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Linear age provides a good fit.
The loess line wiggles around zero – no trend.



Assessing Functional Form (cont’d)
• Method 3 (ASSESS option of proc phreg plots 

cumulative sums of martingale residuals against X 
(to check functional form) or the observed score 
process against Time (to check PH):

• The following code checks Age for functional form.

ods html; ods graphics on; /*required!*/
proc phreg data=pbc;
assess var=(age_yrs) / npaths=50

CRpanel;
model logfuday*status(0) = sex age_yrs   

hepatom;
run;
ods graphics off; ods html close;





Assessing the Cumulative 
Martingale Residual Plot

• The plot shows the observed curve for Age to 
be within the distribution of the simulated 
cumulative martingale residual curves, 
indicating acceptable fit with linear age. 

• Note that ASSESS cannot check functional 
form with a variable out of the model.  It must 
be included in the model in some form.

• To try to illustrate a bad fit, we try log(Age), 
Age2, and Age5.  Only Age5 shows poor fit.









The Resample option of ASSESS

• The Resample option of ASSESS gives
– a test of the functional form
– A test of PH

• Tests are based on a Kolmogorov-type 
supremum test using 1000 simulated 
patterns.

• ASSESS var=(age_yrs) PH / resample;



Supremum Test for Functional Form

Maximum
Absolute                      Pr >

Variable       Value        Reps     MaxAbsVal
age_yrs       6.0767       1000      0.6640

Supremum Test for Proportionals Hazards Assumption

Maximum
Absolute                        Pr >

Variable        Value         Reps      MaxAbsVal
SEX              0.5985       1000         0.9930
HEPATOM    0.5504       1000        0.9920
age_yrs         0.5587       1000        0.9950



Summary of ASSESS Option
• The ASSESS option is a useful tool, but 

should be used in conjunction with other 
checks for functional form and PH.

• The cumulative martingale residual plots 
are not very sensitive for fine-tuning 
functional form.  They can show grossly 
incorrect forms.

• We recommend martingale residuals (not 
cumulative), with a loess line to show 
functional form.



Covariate Interactions

• In many types of models, covariate 
interactions can be a challenge to 
interpret and present.

• With linear or logistic regression 
models, interaction plots are useful.

• With the Cox model, interaction plots, 
like variable effects, are based on 
Hazard Ratios.



Two dichotomous covariates: With interaction:

h(t;x) = ho(t) exp{β1x1 + β2x2 + β3x1x2}
x1, x2      h(t;x)

A, M          0, 1     ho(t) eβ2

log h(t, x)                                               1, 1     ho(t) eβ1 + β2 + β3

0, 0     ho(t)
1, 0     ho(t) eβ1

Β, Μ

Α, F

B, F



Presenting Covariate Interactions

The hypothetical plot above cannot be drawn with 
data because we don’t estimate ho(t).

Option 1:  Present interactions using hazard ratios 
separately within each level of one covariate.  
Let β1  = -0.3 (trt), β2  = 0.7 (gender), and 

          β3  = -0.2 (interaction)
– Males:  HR(trt B vs. trt A) = exp(β1 + β3) 

= exp(-0.3 - 0.2) = exp(-0.5) = 0.61
– Females: HR(trt B vs. trt A) = exp(β1) 

= exp(-0.3) = 0.74
– Trt B better than A, but larger effect in males.



Presenting Covariate Interactions

Option 2:  Compare all subgroups to a single 
baseline group.  These hazard ratios can be 
plotted.  The reference group is Females on 
treatment A.

HR
Males       

A          2.0 = eβ2

B          1.2 = eβ1 + β2 + β3

Females   
A         1.0
B         0.7 = eβ1

2
HR

A1
B

FemalesMales



Presenting Covariate Interactions 
with Continuous Covariates

• For an interaction between a continuous and 
a categorical covariate, plot the HR by the 
continuous covariate, with separate lines for 
the levels of the categorical covariate.

• For an interaction between two continuous 
covariates, plot the HR by one of the the 
continuous covariate, with separate lines for 
selected values of the other covariate.



A striking interaction between age and 
severe edema in the PBC dataset.
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Reference category is Age=30, No Edema



Checking Proportional Hazards (PH)

• Graphical methods to check PH

• Using time-dependent covariates to 
test PH

• Other tests for PH



Checking Proportional Hazards
• Graphical methods

– Plot ln(-ln(S(t))) vs. t or ln(t) and look for parallelism.
– Plot Observed and predicted S(t) and look for close fit.
– Use the PH graph in the ASSESS option of Proc PHREG 
– Plot scaled Schoenfeld residuals vs time (schoen macro)

• Time-dependent covariates
– Add time*covariate “interactions” to the model to fit non-PH.  

If the coefficient for the time-dependent variable is 
significantly different from zero, non-PH is present.

– If significant non-PH is found, this model can be kept to fit 
and interpret the non-PH.

• Other tests for PH  
– Test based on resampling using the ASSESS option.
– Test based on scaled Schoenfeld residuals (schoen macro)



Proportional Hazards:  Graphical Check #1
Plot ln(-ln(S(t))) vs. t or ln(t) and look for parallelism.

Week

FIN = 0
FIN = 1

log(-log S(t))

Parallel curves      PH
Use Kaplan-Meier estimate for S(t).
This plot shows reasonable fit to  the PH assumption.

⇒



Proportional Hazards:  Graphical Check #1

• Interpreting plots is subjective.  In general, conclude 
PH unless a distinct pattern of non-parallelism (e.g., 
crossing) is seen.

• Intertwined lines with no distinct pattern may simply 
indicate no difference between groups.

• Adjusting for other covariates may be needed.
– Example:  To check PH for treatment, adjusted for age:
– Run a Cox model with age as a covariate, stratified by 

treatment.
– Output the estimated survivor functions for each treatment 

group at the overall mean age.
– Plot ln(-ln(   (t))) for each treatment group vs ln(t) and 

check for parallelism.
Ŝ



SAS® Code for log(-log(S(t))) Plots
Unadjusted PH check for Treatment:

Proc lifetest data=data1  plots=(lls);
time days*status(0);  
strata treat;  run;

Adjusted PH check for Treatment, adjusted for Age:
data covs; age=52; run;  /*Overall mean age*/

Proc phreg data=pbc;
model days*status(0) = age;
strata treat;
baseline out=temp covariates=covs loglogs=lls;

Proc plot data=temp; plot lls*days=treat; run;



Proportional Hazards:  Graphical Check #2
Plot Observed and predicted S(t) and look for close fit.

(Only feasible with small number of covariates.)

• Predicted is from Cox model.   Observed is KM.
(Figure from Kleinbaum)



Checking PH using ASSESS option
• The ASSESS option of Proc PHREG plots 

the cumulative score residuals against time to 
check PH.

• This is a “tied down” Brownian process, or 
Brownian bridge, meaning that the values 
always start and end at zero. 

• Random “paths” are generated under PH.
• The path from the actual data is compared to 

the randomly-generated paths under PH.
• If the actual path is within the cloud of 

random paths, it indicates PH.



Checking PH using ASSESS option

Clear evidence of non-PH.

But the form of the non-PH is
not clear.

Cloud of random paths

Path from the actual data



Checking PH using macro SCHOEN
• The SAS® macro, SCHOEN, gives a different 

graphical check for PH.
• Consider the possibility that the β coefficient for a 

given covariate, βk, changes over time, thus giving a 
non-constant hazard ratio.  

• Macro SCHOEN uses a scaled Schoenfeld residual, 
multiplying the vector of Schoenfeld residuals by the 
inverse of their covariance matrix.

• This scaled residual, rik
*, added to βk, is an estimate of 

the time-dependent β coefficient:  rik
* + βk ≈ βk(ti).

• rik
* + βk is plotted against time, or a function of time.

• PH is indicated by a flat pattern around Y=0.
• Non-PH is indicated by any deviation from a flat line at 

Y=0.



Which function of time?
• The Schoenfeld residuals can be plotted against 

any function of time, such as raw, log-transformed, 
or rank-transformed.  

• The pattern shown over time indicates the form of 
non-PH.

• Different functions show different shapes, and some 
may be better for highlighting non-PH for a 
particular variable.  Try more than one.

• Options available in the “schoen” macro are:
– Raw time
– Rank-transformed time
– Time transformed by (1 - Kaplan-Meier)  (Similar to 

probability integral transformation.)



Scal ed resi dual s(Bt )  as a f cn of  t i me.

Xvars= group
schoen macro:  event =cens t i me=t  st rat a=
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Checking PH with macro SCHOEN 
(KM-transformed time scale)

Non-PH shown by increasing trend.  
Note the top and bottom lines are the same 
Schoenfeld residuals shown on slide 20.  



Interpreting the SCHOEN Plot
• The previous plot clearly shows an 

increasing pattern, suggesting linear.
• The true hazard ratio is linearly 

increasing in log(t).  
• The SCHOEN plot is more useful than 

the ASSESS plot in showing the 
appropriate functional form for a non-PH 
relationship.



Scal ed resi dual s(Bt )  as a f cn of  t i me.

Xvars= group
schoen macro:  event =cens t i me=t  st rat a=
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Macro SCHOEN with raw time scale

SCHOEN plots are sensitive 
to the time scale used.  
Very few points beyond t=4.



Scal ed resi dual s(Bt )  as a f cn of  t i me.

Xvars= group
schoen macro:  event =cens t i me=t  st rat a=
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Macro SCHOEN with rank time scale
Increasing trend, similar to that seen in KM time scale.



Macro SCHOEN time scales
• SCHOEN plots are sensitive to the time 

scale used.  Try more than one.
• If data are very skewed, it is often better to 

use the rank or KM time scale.

• Note:  Virtually all tests for PH are based 
on the choice of a particular time function, 
g(t), for the non-PH.  
– A test will be most powerful to detect non-PH 

based on the particular g(t), and will have less 
power to detect non-PH of other forms.



Time-dependent covariates:  Two types
• Time-varying covariates:  Covariate values change over 

time.
– Ex:  For time to re-arrest after release from prison, a 

time-varying covariate would be whether the person is 
employed (0=no, 1=yes) at a given time.

Cox model for x1= fixed covariate, x2 = time-varying 
covariate:

• Time x covariate interactions:  used to test or model 
non-proportional  hazards.  We focus here on this type.

The hazard ratio for x1=1 vs. x1=0 changes (either 
increases or decreases) as t increases.

h t x h t x x t( ; ) ( )exp{ ( )}= +0 1 1 2 2β β

h t x h t x x t( ; ) ( )exp{ }= +0 1 1 2 1β β



Time*Covariate Interactions
h(t;x) = ho(t) exp{β1x + β2x t }

β2 >0 => HR increasing with time
β2 <0 => HR decreasing with time
β2 =0 => HR constant with time => PH

Add x* t to the model to test PH (test H0: β2=0).
If β2 significant, then leave x* t in the model 

(to model the non-PH).
Some authors suggest other interactions, e.g., 

x*log(t) or x*I[t>c] (heavyside function).  Use 
whatever fits best.



SAS® Code for 
Time*Covariates

proc phreg; 
model week*arrest(0) = age fin TDfin;
TDfin = fin*week;     ****
run;

****or:  TDfin = fin*log(week);
or:  TDfin = fin*(week>25);  (for a different 

hazard ratio before vs. after week 25)



Stratification vs. Time*Covariate 
Interactions for Handling Non-PH

• Time*Covariate Interaction
– Must choose a particular form, such as x*t or x*log(t).
– If this form is correct, yields more efficient estimates of other 

βs.  (robustness vs. efficiency)
– The changing HR over time can be presented and 

interpreted.
• Stratification

– Takes less computation time
– Models any non-PH relationship, not just specific forms
– No inference is possible for the stratification variable; only 

makes sense for “nuisance variables”.



Checking PH with Many Covariates

• Check PH for each covariate separately.
• If interactions are present, check PH over 

all interaction subgroups (e.g., Males, A; 
Females, A; Males, B; Females, B)

• If collinearity (confounding, treatment 
imbalance) is present among covariates:  
To check PH for x1, estimate Si(t) for the 
levels of x1 based on a Cox model 
stratified by x1, with other covariates in 
the model.  Plot  ).log(  vs.))(ˆloglog( ttSi−



Difficulty of Checking PH

• In checking each covariate, we assume PH 
holds for the other covariates.  Which 
covariate do we start with?

• If PH fails for a covariate, we should go back 
and re-check the others after adjusting for 
the non-PH of the first.

• A wrong functional form or a missing 
covariate can look like non-PH.

• Checking PH can be a difficult process.
• See Kleinbaum for more details.



Summary and Recommendations
• Check for outliers 

– Deviance residual plot
• Check for functional form of continuous covariates

– Martingale residual plots
• Check for non-PH

– Use log(-log(S(t))) plots (either unadjusted or adjusted)
– Test time*covariate interactions
– Use the “schoen” macro to plot βk(ti) by time

• Checking assumptions takes time.  Take the time.
• Checking can be never-ending, so balance is 

needed.  Some checking is better than none.  



The Cox Modeler’s Blessing

May your continuous covariates all 
be linear, 

and may all your covariates satisfy 
the proportional hazards 
assumption …
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