

How to Incorporate Old SAS Data into a New DATA Step,
or “What is S-M-U?”

Andrew T. Kuligowski – Nielsen Media Research

 Abstract / Introduction
 The SET statement is commonly used to

concatenate two or more SAS datasets together.
Let us look at a basic example:

S-M-U. Some people will see these three letters and
immediately think of the abbreviation for a private
university and associated football team in Texas.
Others might treat them as a three-letter word, and
recall a whimsical cartoon character created by Al
Capp many years ago. However, in the world of the
SAS® user, these three letters represent the building
blocks for processing SAS datasets through the SAS
DATA step. S, M, and U are first letters in the words
SET, MERGE, and UPDATE – the 3 commands
used to introduce SAS data into a DATA step.

DATA newdata;
 SET olddata1 olddata2;
 /* additional statements */
RUN;

In this example, the SAS Data Step will first read in
each record from SAS dataset olddata1 and, by
default, write each of those records to SAS dataset
newdata. Then, after the last record in olddata1 has
been processed, each record in olddata2 will be
read in and subsequently written out to newdata. By
default, each observation in newdata will contain
every variable in olddata1 and every variable in
olddata2. If there are variables that are defined in
olddata1 but not olddata2, the values will default to
missing for those variables on the observations that
are copied from olddata1. The opposite will be true
for variables defined on olddata2 but not on
olddata1.

This presentation will discuss the syntax for the SET,
MERGE, and UPDATE commands. It will compare
and contrast these 3 commands. Finally, it will
provide appropriate uses for each command, along
with basic examples that will illustrate the main
points of the presentation.

SET Statement

 According to the Version 6 SAS Language
Reference, the SET statement “… reads
observations from one or more existing SAS
datasets.” Under ordinary circumstances, each
variable, on each observation, on each SAS dataset
specified by the SET statement, is read into the SAS
Program Data Vector, and each is subsequently
written out to the new output SAS dataset - although
this can be overridden with other logic in the DATA
step.

Depicted graphically, a single SET statement
combines two or more SAS datasets vertically.
Using the simple routine listed above, we would get:

olddata1 - Record 1

olddata1 - Record 2

olddata1 - Record 3

olddata1 - Record 4

olddata1 - Record 5

olddata2 - Record 1

olddata2 - Record 2

olddata2 - Record 3

olddata2 - Record 4

olddata2 - Record 5

The basic SET statement is very simple:

DATA newdata;
 SET olddata;
 /* additional statements */
RUN;

In this simple example, the SET statement
introduces each record in SAS dataset olddata into
the current DATA step. By default, those records
are subsequently written out to SAS dataset
newdata, although any or all of those records can be
either output or discarded on a conditional basis if
desired.

There is an important condition that the SAS coder
must be aware of when combining two or more SAS
datasets. Variables that are common to two or more
SAS datasets must have consistent definitions in
each of those datasets in order to be used
successfully in the SET statement (or, as will be
discussed later, the MERGE or UPDATE

1

novotj00
TU09

statements). The most severe situation is when a
variable is defined as character in one SAS dataset,
but as a numeric in another. Should this occur, SAS
will trip the internal _ERROR_ variable to 1 (for
“true), set the return code to 8, and write the
following ERROR message on the SASLOG:

olddata1 - Record 1

olddata2 - Record 1

olddata2 - Record 2

olddata1 - Record 2

olddata1 - Record 3ERROR: Variable variablename has
 been defined as both olddata1 - Record 4

 character and numeric. olddata2 - Record 3
 olddata1 - Record 5
If the common variables are both character or both
numeric, but have different lengths, the output
dataset will use the first length it encounters for that
variable. This will be typically be in the first dataset
in the SET statement. However, this default action
can be overridden by inserting a LENGTH statement
prior to the SET statement, as follows:

olddata2 - Record 4

olddata2 - Record 5

It is also possible to use the SET statement to
perform direct access (also known as random
access) queries against a SAS dataset in order to
retrieve a specific record. This is done by using the
POINT= option on the SET statement. POINT= is
followed by the name of a temporary SAS variable,
which must have an integer value between 1 and the
maximum record number in the SAS dataset being
processed. This number can be easily obtained by
using another option, NOBS=. NOBS= specifies a
temporary variable that is populated during DATA
step compilation with the number of observations in
the applicable SAS dataset.

DATA newdata;
 LENGTH commonvr $ 25.;
 SET olddata1 olddata2;
 /* additional statements */
RUN;

It should be noted that PROC APPEND can also be
used to concatenate two SAS datasets, and it can
often be more efficient than using a SET statement
within a DATA step. However, PROC APPEND can
only be used on two SAS datasets, while the SET
statement can be used on three or more SAS
datasets. In addition, the SET statement can be
used in conjunction with other DATA Step
statements to further massage the input data and to
perform conditional processing; this additional
functionality is not possible using PROC APPEND.

This concept is sometimes difficult to explain and to
comprehend with only words; an example is needed
for clarification. The following routine reads in every
other record of a SAS dataset:

DATA newdata;
 DO recno = 2 TO maxrec BY 2;
 SET olddata POINT=recno The SET statement can also be used to interleave

two or more SAS datasets. In order to do this, each
of the desired SAS datasets must contain the same
key variables, and each must be sorted by those key
variables. Then, the SET statement must be
immediately followed by a BY statement listing those
key variables, as follows:

 NOBS=maxrec;
 /* additional statements */
 END;
 STOP;
RUN;

Note that a STOP statement is required in order to
terminate the current DATA step. This is because
DATA step processing is concluded when the INPUT
statement reads the End-of-File. However, when
using the POINT= option, the INPUT statement
never processes the End-of-File marker. Therefore,
the DATA step is never terminated – not unless the
coder specifically orders it via the STOP statement.

DATA newdata;
 SET olddata1 olddata2;
 BY keyvar1 keyvar2;
 /* additional statements */
RUN;

In the preceding example, newdata will contain the
observations from both olddata1 and olddata2. It
will be sorted by the variable(s) referenced in the BY
statement, in this case, keyvar1 and keyvar2.

As stated earlier, NOBS= is populated at compile
time, rather than during execution. This allows us to
reference the number of records in a SAS dataset
without actually executing the SET statement! The
following example demonstrates this principle:

The addition of a BY statement causes the records
to be interleaved, but does not alter the fact that the
records are combined vertically. Graphically, this
would look as follows:

2

DATA _null_;
 PUT maxrec ‘Recs in olddata.’;
 STOP;
 IF 1 = 0 THEN
 SET olddata NOBS=maxrec;
RUN;

In this example, the SET statement defining the
variable maxrec is coded AFTER the variable is to
be displayed. Furthermore, the “IF 1 = 0” condition
can obviously never be true, so the SET statement
never actually executes. However, the variable
maxrec is correctly populated with the record count
of olddata during the compilation of the DATA step.
This allows the record count to be printed, using the
PUT statement, in the first line of the DATA step.

END= is another useful option. It specifies a
temporary SAS variable that is normally set to 0
(‘false’). However, it is “tripped” and reset to 1
(‘true’) when the INPUT statement encounters the
last record in the SAS dataset being read (or, if
multiple datasets are specified, the last record in the
last SAS dataset on the INPUT statement) This can
facilitate any extra end-of-file processing that is
required for the current DATA step.

DATA newdata;
 SET olddata END=lastrec;
 /* additional statements */
 IF lastrec = 1 THEN DO;
 /* additional end-of-file */
 /* processing statements */
 /* go here. */
 END;
RUN;

There are a number of SAS Dataset options that can
be used to enhance the processing of the SET
statement. Dataset options must be enclosed in
parentheses, and must immediately follow the
dataset which they are describing. For example, a
common request is to create a subset of a SAS
dataset. This can be done by inserting an IF
statement or a WHERE statement in the DATA step.
However, it is also possible to do this by using the
WHERE= dataset option in conjunction with the SET
statement.

DATA newdata;
 SET olddata
 (WHERE=(keyvar < 10));
 /* additional statements */
RUN;

Dataset options can also be used to limit the number
of records processed by the SET statement.
FIRSTOBS= causes processing to start at a
specified observation number, while OBS= causes

processing to start at a specified observation
number. They can be used together; the following
example only processes the 1000th through the
2000th observations of a SAS dataset:

DATA newdata;
 SET olddata
 (FIRSTOBS=1000 OBS=2000);
 /* additional statements */
RUN;

There are several instances when it can be
advantageous to use two or more SET statements
within the same DATA step. For example, one
coding technique is to store constants in a separate
dataset, bringing them in at the beginning of a DATA
step, as follows:

DATA newdata;
 IF _N_ = 1 THEN DO;
 RETAIN konst1-konst5;
 SET konstant;
 END;
 SET olddata;
 /* additional statements */
RUN;

In this example, note that the SAS dataset konstant
is only read during the first iteration of the DATA
step, and that only one record is processed from
konstant. The values that were read in from this
record will be available throughout the entire
execution of the DATA step, due to the RETAIN
statement.

It is also possible to conditionally use the contents of
one dataset to process another dataset, as in the
following example:

DATA newdata;
 SET employee;
 IF married = ‘Y’ THEN
 SET spouse;
 IF childcnt > 0 THEN
 DO i = 1 TO childcnt;
 SET children;
 END;
 /* additional statements */
 /* go here. */
RUN;

In this example, it is assumed that all 3 datasets are
sorted by some common key variable. Following
through the logic, it is assumed that every married
employee has one and only one spouse, and the
appropriate record is obtained. Furthermore, the
routine determines the number of children that the
employee has, and processes one record for each of
them.

3

DATA newdata; Depicted graphically, two or more SET statements
combine SAS datasets horizontally. Basically, it
would look as follows:

 MERGE olddata1 olddata2;
 BY keyvar(s);
RUN;

Dataset A - Record 1 Dataset B - Record 1
Match-merging is a very powerful tool. With two
statements - MERGE, followed immediately by BY –
the DATA step can handle cases of:

Dataset A - Record 2 Dataset B - Record 2

Dataset A - Record 3 Dataset B - Record 3

Dataset A - Record 4 Dataset B - Record 4
• One-to-one matching, where there is one record

in each file containing the same key values. Dataset A - Record 5 Dataset B - Record 5
 • One-to-many matching, in which the first file has

one record containing a particular set of key
values and the second (or subsequent) file has
multiple records containing those same key
values, and

It should be noted that multiple SET statements
could actually produce undesirable results. Since
DATA step processing stops after the SET
statement encounters an End of File marker – the
first End of File marker in the case of multiple input
datasets – the smallest dataset drives the number of
iterations for the DATA step. In addition, the logic
can get very cumbersome. There is an easier way
to accomplish the same thing …

• Many-to-one matching, where the first file has
multiple records containing a unique set of key
values and the second file has only one record
with those key values.

 This is best shown graphically. The following

example shows 2 datasets, both with 4 records
each. Both files begin with a first record containing
the same key value, illustrating 1-1 matching. The
first file then contains one record with a different key
value while the second file contains two records with
that key, showing 1-many matching. Finally, the first
file contains two records with another unique key,
while the second file only has one record with that
key, demonstrating many-1 matching:

MERGE Statement

The MERGE statement “ … joins corresponding
observations from two or more SAS datasets into
single observations in a new SAS dataset,” to quote
from the Version 6 SAS Language Reference.

The simplist example of the MERGE statement
would be a one-to-one merge, as follows:

DATA newdata;

Dataset A - Record 1
Key value = “A”

Dataset B - Record 1
Key value = “A”

Dataset B - Record 2
Key Value = “B”

Dataset A - Record 2
Key Value = “B”

Dataset A - Record 2
Key Value = “B”

Dataset A - Record 3
Key Value = “C”

Dataset B - Record 3
Key Value = “B”

Dataset A - Record 4
Key Value = “C”

Dataset B - Record 4
Key Value = “C”

Dataset B - Record 4
Key Value = “C”

1-1

1-Many

Many-1

Dataset A - Record 1
Key value = “A”

Dataset B - Record 1
Key value = “A” MERGE olddata1 olddata2;

RUN;
Dataset B - Record 2

Key Value = “B”
Dataset A - Record 2

Key Value = “B”

Dataset A - Record 3
Key Value = “C”

Dataset B - Record 3
Key Value = “B”

Dataset A - Record 4
Key Value = “C”

In this example, this routine takes the 1st record in
olddata1 and the first record in olddata2, and joins
them together into a single record in newdata. This
is repeated for the 2nd records in each dataset, the
3rd records, etc. Dataset B - Record 4

Key Value = “C”

This technique is not often used in the real world, or
more accurately, not often used intentionally. The
main problem is that it is grounded in the
assumption that there is a record-to-record
relationship in each of the datasets to be merged,
regardless of the contents of those records. This is
not often the case.

It is much more common to find that there is a
record-to-record relationship based on the values of
key fields found in both files. This approach, known
as match-merging, requires all of the files in the
MERGE statement to be sorted by the same
variable(s). To show a simple example:

4

Variable names that are common to two or more
SAS datasets on the MERGE statement must have
the same definition on each of those datasets, just
like with the SET statement. However, unlike the
SET statement, the value from the second dataset
will overlay the value from the first dataset with
MERGE. Sometimes this is desirable, while other
times it is unwanted. In the latter case, the
RENAME= option will allow the variables from both
datasets to be written to the new output dataset,
albeit with different names.

It is also signicant to note what the example does
not show. There are no examples of “1 to null” or
“null to 1”, or “many to null” or “null to many” merges,
although these are all valid. These occur when a
given key value exists in one file, but not the other.
Each of these is a valid MERGE condition, however,
and will result in record(s) being written to the output
file. In this case, any variable that is only present on
the file without the current key value will contribute
null values for those variables to the final output
dataset.

The use of the RENAME= option is simple: We do also not have any examples of many-to-many

merges. This condition occurs when both files have
multiple record with the same key values present.

MERGE olddata1
 (RENAME=(oldname=newname)) To illustrate this graphically:
 olddata2;

Dataset A - Record 1

Key value = “A”
Dataset B - Record 1

Key value = “A” The output dataset will contain the values of the
variable oldname from both olddata1 and olddata2,
although the value from olddata1 will be stored in
the new variable, called newname. Dataset B - Record 2

Key Value = “A”
Dataset A - Record 2

Key Value = “A”

Dataset A - Record 3
Key Value = “A”

Dataset A - Record 4
Key Value = “A”

It is possible to perform conditional processing,
based on the source dataset for each record, by
using the IN= dataset option. The IN= parameter
creates a temporary variable associated with the
dataset for which it is specified. The variable is set
to 1 (for “True”) if the specified dataset is
contributing data to the current observation;
otherwise it is set to 0. This allows for specialized
processing, depending on the source of the current
data. IN= can be used with the SET statement, but
it is much more commonly found along with the
MERGE statement.

Dataset B - Record 3
Key Value = “A”

SAS cannot process many-to-many merges with the
MERGE statement. They result in an ominous note
to the SASLOG, and undesirable output results.
However, be warned - the routine does NOT
terminate with a non-zero condition code. In fact,
processing continues on as though nothing is wrong,
even though the results of the merge are almost
definitely NOT what the author intended! Note that
PROC SQL is capable of processing many-to-many
merges. However, this is outside the scope of this
presentation.

Let us look at a simple example of IN=, with
subsequent conditional processing:

DATA newdata;
 MERGE olddata1(IN=in_old1)
 olddata2(IN=in_old2);
 BY keyvar(s); It is possible to programatically prepare your data to

avoid the risk of attempting a many-to-many merge
by removing multiple records with the same key
values, using the NODUPKEY option on PROC
SORT, as follows:

 IF in_old1 AND in_old2 THEN
 /* additional statement(s)*/
 IF in_old1 AND NOT in_old2 THEN
 /* additional statement(s)*/
 IF NOT in_old1 AND in_old2 THEN
 /* additional statement(s)*/ PROC SORT DATA=olddata1 NODUPKEY;
 IF NOT in_old1 AND BY keyvar(s);
 NOT in_old2 THEN RUN;
 /* additional statement(s)*/ RUN; However, this approach can also delete records that

should actually be processed. The reader is
encouraged to read this author’s “Pruning the
SASLOG…” presentation, as cited in the
“References” section at the end of this presentation,
for techniques to eliminate many-to-many merges.

The variable in_old1 will be set to 1 (true) when the
current observation in newdata is being fed from
olddata1 and 0 (false) when it is not. The same
thing is true for variable in_old2 and SAS dataset
olddata2. The subsequent IF statements allow for

5

special processing if the current observation
contains data from both olddata1 and olddata2, from
olddata1 but not olddata2, from olddata2 but not
olddata1, and from neither olddata1 nor olddata2.

Master - Record 1
Key value = “A”

Master - Record 2
Key Value = “B”

Master - Record 3
Key Value = “C”

Update - Record 1
Key value = “A”

Update - Record 2
Key Value = “B”

Update - Record 3
Key Value = “B”

Update - Record 4
Key Value = “C”

Update Dataset - Record 1

Key value = “A”

 (Values from Update file)

Update Dataset - Record 2

Key value = “B”

(Values from Update file,
both records)

Update Dataset - Record 3

Key value = “C”

 (Values from Update file)

Of course, alert readers will quickly realize that the
4th and final IF statement is not necessary in the
previous example. Since the DATA step is being fed
from observations in olddata1 and olddata2, there
will never be an instance where the routine will be
processing a record that is not present in either
dataset! (It is sometimes beneficial to embed this
explanation in a comment within your code,
depending on your audience.) In addition, the
experienced coder will quickly realize that this
example could be made more efficient by using the
ELSE statement; however, that is outside the scope
of this presentation.

It should be noted at this point that most options
available for the SET statement are also valid for
use with MERGE, and vice verse. (Notable
exceptions are POINT= and NOBS=, which are
exclusive to the SET statement.) These topics are
introduced in this paper under the command where
the author has personally found them to be of most
use in his daily activies.

UPDATE Statement

The UPDATE statement is similar to the MERGE
statement, “… but the UPDATE statement performs
the special function of updating master file
information by applying transactions …” to quote
once more from the Version 6 SAS Language
Reference.

The UPDATE statement combines records from two
files in a horizontal fashion, like the MERGE
statement. However, there are a number of
significant differences between the two statements:
• UPDATE can only process two SAS datasets at

a time – the Master dataset and the Transaction
dataset. A single MERGE statement can
process 3 or more SAS datasets.

•

•

• The UPDATE statement can avoid overlaying
any given value in the Master dataset with a
value in the Transaction dataset by setting the
corresponding value in the Transaction dataset
to missing. This would require more complex
conditional logic to accomplish via the MERGE
statement.

Depicted graphically, the UPDATE statement
performs a modified version of a horizontal merge, in
which values on the original records are overlaid
with new information:

The UPDATE statement is simple to code – in fact,
the only difference between it and the earlier
MERGE statement / BY statement example is the
word “UPDATE”: The BY statement is optional (although typically

used) with MERGE, but is required with
UPDATE.

DATA newdata;
UPDATE can only process one record per
unique BY group value in the Master dataset. It
can process multiple records per unique BY
group value in the Transaction dataset.
However, in this case, each Transaction record
is applied to the same record in the Master
dataset, which means that transactions can be
overlaid by subsequent transactions within the
same DATA step.

 UPDATE olddata1 olddata2;
 BY keyvar(s);
RUN;

However, the true utility of the UPDATE command
becomes apparent after examining “before” and
“after” sample data:

6

 SAS Dataset: MASTER
OBS KEY1 UPDT1 UPDT2
 1 AL 1001 2
 2 FL 1002 4
 3 GA 1003 8
 4 MS 1004 16

 SAS Dataset: XACTION
OBS KEY1 UPDT1 UPDT2 NEW3
 1 AL 1111 52 A
 2 GA 1133 54
 3 GA 2133 . C
 4 MS . . D
 5 LA 4555 65 E

 SAS Dataset: UPDATIT
OBS KEY1 UPDT1 UPDT2 NEW3
 1 AL 1111 52 A
 2 FL 1002 4
 3 GA 2133 54 C
 4 MS 1004 16 D
 5 LA 4555 65 E

In this example, the first record in the Master File (for
KEY1=AL) has its values changed for fields UPDT1
and UPDT2, as well as a value added for newly
created field NEW3. The second record (KEY1=FL)
is untouched, and NEW3 is set to missing. The third
record (KEY1=GA) is actually changed twice due to
two separate records in the Transaction dataset,
with only the final set of changes stored to the output
file. The fourth record (KEY1=MS) does not have its
original two values adjusted, because the values are
set to missing in the transaction dataset. However,
a value is inserted for the new variable NEW3. The
last record in the Transaction file (KEY1=LA) does
not exist in the Master dataset, so it is added.

The question arises – what if you WANT to replace
an existing value with a missing value? This is
possible, but requires a little extra coding. The
MISSING statement, added to the DATA step, will
define special missing values that can be used in the
Transaction data. The values “A” through “Z” will
display as coded, while an underscore “_” will invoke
the standard missing data representation of a dot “.”.
Note that the MISSING command must be present
during both the creation of the transaction data and
in the UPDATE DATA step.

MODIFY Statement

The MODIFY statement was added in Version 6.07
of the SAS System. It has many of the same
capabilities of the SET, MERGE, and UPDATE
statements – with one important difference. To
quote from SAS Technical Report P-222, the
MODIFY statement “… extends the capabilities of

the DATA step, enabling you to manipulate a SAS
data set in place without creating an additional
copy.”

Neither SET, nor MERGE, nor UPDATE has the
ability to update a dataset in place. They give the
appearance of doing that when the DATA statement
specifies a dataset name that is the same as one in
SET, MERGE, or UPDATE. However, in actuality,
the DATA step creates a new dataset in this
instance, and then replaces the old dataset upon
completion. The MODIFY statement avoids the
creation of this temporary dataset, along with the
extra temporary disk storage that it requires and the
time – processing and clock – it takes to make it.

However, as one might expect, there is a trade-off
that must be considered before using the MODIFY
command. To quote from the manual: “Damage to
the SAS data set can occur if the system
terminates abnormally during a DATA step
containing the MODIFY statement.” The user
must take special care to prevent their dataset from
being corrupted while being MODIFY-ed, whether
the problem is caused by the execution of buggy
code or from the careless absence of a UPS upon a
power outage.

The most basic form of the MODIFY statement is
quite simple:

DATA dataset;
 MODIFY dataset;
 /* additional statements */
RUN;

It acts much like the SET statement discussed
earlier. However, there are some major differences
between the two:

• As mentioned above, the MODIFY statement

causes the current dataset to be changed in
place -without expending the I/O and disk space
to generate a new dataset. Therefore, as should
be expected, the name of the output dataset
must be the same as the one being modified.

• Additional variables cannot be added and

unneeded variables cannot be deleted from a
MODIFY-ed dataset. It should be noted that no
ERROR or WARNING statement will be
generated if these statements are present in the
SAS code; the requested structure alterations
will simply not be applied.

• The REPLACE statement causes the current

record to be rewritten in the MODIFY-ed SAS
dataset with any changes applied. The OUTPUT
statement causes a new record to be written to

7

the MODIFY-ed dataset – however, the original
record will still be present on the output file,
resulting in two separate records upon
completion of the DATA step. This difference
cannot be sufficiently emphasized – the
OUTPUT statement, when used with MODIFY
causes a second, duplicate record to be added
to the end of the current SAS dataset. The user
must be certain not to use OUTPUT instead of
REPLACE, which changes the current record in
place and does not result in an additional record.

• You cannot DELETE an observation when using

the MODIFY statement. You can, however, use
the REMOVE command to eliminate unwanted
observations.

The MODIFY statement can be used for sequential
(random) access. The syntax is similar to that of the
SET statement as discussed earlier:

DATA dataset;
 DO recno = 2 TO maxrec BY 2;
 MODIFY dataset POINT=recno
 NOBS=maxrec;
 /* additional statements */
 END;
 STOP;
RUN;

The need for the STOP statement is also similar to
that of the SET statement - assuming the coder
wishes to avoid the pitfalls of an infinite loop.
It is also possible to join two or more SAS datasets
using the MODIFY statement. As with the other
examples in this section, the syntax is similar to that
of the SET and UPDATE statements.

DATA master;
 MODIFY master transact;
 BY keyvar1 keyvar2;
 /* additional statements */
RUN;

Both the master and transaction datasets must
contain the same key variables. However, they do
not need to be sorted by those variables – the
presence of a BY statement causes the SAS System
to invoke a dynamic WHERE clause. Please note
that, although not required, it is highly recommended
for efficiency sake that the datasets be sorted or
indexed by the key variables in the BY statement.)

There is one other important difference - multiple
records with the same key values act differently
when processed with the MODIFY statement.
Duplicate key values in the master file will not be
altered – only the first record of occurrence is
updated due to the aforementioned WHERE clause
processing. (As one might expect, multiple records

in the transaction file will overwrite each other, so
that only the changes in last transaction record in
the series will be available in the master dataset at
the end of the DATA step.) These differences
provide a “safety valve” to prevent unwanted
alterations to your permanent SAS data.

Speaking of “safety valves”, the user is highly
encouraged to incorporate the automatic variable
IORC into their routines. _IORC_ contains the
return code for every I/O operation that is performed
by the MODIFY statement – or rather, that for each
one that is attempted. The simplest use would be to
simply ensure that the field contains a zero before
continuing on with the routine. It can be made more
complex, with logic handling specific errors, or by
using the IORCMSG function to obtain and display
the associated error message for the return code.
(Note that IORCMSG is not available under Version
6 of the SAS System.)

Conclusion

This presentation is designed to be a brief
introduction to the SET, MERGE, UPDATE, and
MODIFY commands. It is not a “shopping list” of the
various options available for each command; that
information is readily available in the manuals, as
listed in “References” below. The reader is
encouraged to sit down at the computer and try
examples of each command to facilitate his or her
learning of the subject; only after hands-on trial will
the information truly be meaningful to the reader.

8

9

APPENDIX A
LIBNAME Statement

It has been brought to the attention of the author that
some readers of this presentation may be unfamiliar
with the LIBNAME statement. Since this statement
or its equivalent is required in order to permanently
store SAS data, this section has been included as a
reference for any who may need it.

All SAS datasets are stored in SAS Data Libraries.
In fact, the standard specification for a SAS dataset
contains two levels – the SAS Data Library name,
and the individual SAS dataset name, separated by
a period, or “dot” if you prefer. Of course, even the
newest of SAS users will realize that many SAS
datasets are represented by only one name. This is
because the default SAS data library is “WORK”.
WORK is automatically defined when SAS is
invoked, and the absence of a Data Library name in
a SAS dataset name causes SAS to use the WORK
library.

Each SAS Data Library must be denoted by a
LIBNAME. A LIBNAME, also commonly known as a
LIBREF, is a shorthand representation, or nickname
if you prefer, of the actual dataset name as defined
by your particular operating system.

There are several ways to define a LIBNAME to the
SAS System. One of them is to provide a file
reference to the external file using a host system
command outside of the SAS System - a JCL "DD"
statement under IBM's MVS, for example. To cite
an example that has already been referenced, this is
the method by which the WORK library is allocated
to the SAS session.

An alternate method is to use the LIBNAME
statement under SAS. The LIBNAME statement is a
global statement, and is executed outside of the
DATA step. The generic syntax for this statement is:

LIBNAME libref <engine>
 'external file' <options> ;

“Engine” and “options” will not be discussed at this
time; they will be deferred to a more advanced
presentation. As one might expect, however, many
of the options for the LIBNAME statement are
dependent on the operating system. Consult the
appropriate "Companion" document for your
operating systems for details.

It is also worth noting that the LIBNAME statement
can be executed with two special keywords under
any operating system:
• CLEAR will remove a reference to an existing

SAS Library:
LIBNAME libref CLEAR;

• LIST will write the attributes of the specified
LIBNAME to the SASLOG:

LIBNAME libref LIST;

There is also a LIBNAME function that can be
invoked from within a DATA step to perform the
same purpose. The syntax is similar to the
LIBNAME statement:

LIBNAME(libref, 'external file',
 ,<engine>, <options>);

APPENDIX B
References / For Further Information

Kuligowski, Andrew T. (1999), "Pruning the
SASLOG – Digging into the Roots of NOTEs,
WARNINGs, and ERRORs". Proceedings of the
Seventh Annual Conference of the SouthEast SAS
Users Group. USA.

Riba, S. David. “The SET Statement and Beyond:
Uses and Abuses of the SET Statement”.
http://www.jadetek.com/download/jade_set.pdf

SAS Institute, Inc. (1990), SAS Language:
Reference, Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (2000), SAS OnlineDoc, Version
8. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1994), SAS Software: Abridged
Reference, Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (1991). SAS Technical Report P-
222, Changes and Enhancements to Base SAS
Software, Release 6.07. Cary, NC: SAS Institute,
Inc.

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute, Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

Special thanks to Dave Riba and Ian Whitlock for
their suggestions while preparing this paper.

The author can be contacted via e-mail as follows:
 A_Kuligowski@MSN.com
 Andy.Kuligowski@NielsenMedia.Com

mailto:A_Kuligowski@MSN.com
mailto:Andy.Kuligowski@NielsenMedia.Com

	Abstract / Introduction
	SET Statement
	MERGE Statement
	APPENDIX A
	LIBNAME Statement

